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I. INTRODUCTION 

In recent years Gottlieb and Orszag [l, 23 have shown that for smooth solutions 
(i.e., infinitely differentiable functions) of differential equations, high accuracy can 
be attained using spectral methods. In these methods, the solution being sought is 
approximated by a (truncated) series of smooth basic functions and the exponential 
convergence of the series is obtained if these basic functions are suitably chosen; for 
example, Fourier series should be used for problems with periodic boundary con- 
ditions while eigenfunctions such as Chebyshev and Legendre polynomials of the 
singular Sturm-Liouville problem should be chosen for problems with the general 
type of boundary conditions [ 11. 

Spectrally accurate solution of Poisson’s equation in a square with homogeneous 
Dirichlet boundary conditions by expansion in Chebyshev polynomials have been 
obtained by Haidvogel and Zang [3]. Deville [4] has further extended the spectral 
solution of Poisson’s equation in a rectangular domain with general type of boun- 
dary conditions. 

In this note, a spectrally accurate solution for three-dimensional Poisson’s 
equation and Helmholtz’s equation using Chebyshev series and Fourier series is 
described for a simple domain in a cylindrical coordinate system. The boundary 
conditions imposed can be either homogeneous or inhomogeneous and of Dirichlet, 
Neumann, or general mixed type. In particular, such domain could be a bend of 
rectangular cross section as shown in Fig. 1. It will also be shown that a mixed- 
spectral-finite-difference approach to the solution of the Poisson’s equation and 
Helmholtz’s equation in such a domain can readily be implemented as well. 

II. MATHEMATICAL FORMULATION 

The right-handed cylindrical coordinate system (r, 0, z) (Fig. 1) will be used. 
We nondimensionalize the length in such a way that (e.g., for a bend, lengths are 

then in units of half the height of the bend) 
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r=ri 

FIG. 1. A bend of rectangular cross section in cylindrical coordinate system (r, 0, Z). 

ri and r. are the inner and outer radius, and the azimuthal coordinate 8 extends 
from 0 to &, i.e., 

oa968,. 

Before expanding the solution U(r, 8, Z) in a series of Chebyshev polynomials, 
the domain in (r, 0, Z), 

ri<r<r,; 

0<8<8,, 

-l<Z<l; 

is mapped into the domain in (R, 4, Z) such that 

-l<RQl; 

-l<$<l; 

-l<Z<l; 

using 

r=qR+l (2.la) 

and 
e=gl+(b)e, (2.lb) 

where q = f(r,, - ri), 5 = f(ro + ri). 
In (R, 4, Z), the Poisson’s equation and the Helmholtz’s equation can be written 

as 

U(R,qi,Z)=S(R,&Z), (2.2) 
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where the differential operator 9’ is given by 

i a2 z=--+ l a 
q2aR2 q(qR+l)z 

for Poisson’s equation, and 

i a* 1 
a+ K, 

y=;;idRZ+tj(qR+t)aR (vR+<)*+~’ 

(2.3) 

(2.4) 

(both K. and K, are constants) for Helmoltz’s equation. 
The boundary conditions can be of the general type as follows. 

at R= +l: (2Sa, b) 

at b= fl: a* U(R, Z)+b, $=G,(R, Z) (2.5c, d) 

at Z= fl: a.WO+~,~=H,(R,O (2Se, f) 

In Eq. (2.5), the subscript + pertains to that at R, 4, Z= + 1 while the subscript - 
pertains to that at R, 4, Z = - 1. 

In the spectral approach to the solution of Eq. (2.2) using Chebyshev 
polynomials, all the functions iJ, S, F,, 

- 
G, , and H+ are approximated by trun- 

cated Chebyshev series as follows: 

G,(R Z) = 2 g,,(R) T,(Z) 
If=0 

H,(R, 4) = f h+,(R) T,(b) 
m=O 

(2.6d) 

(2.6e) 

The R-dependence in Eq. (2.6) is kept with the intention of using the collocation 
approximation over the Chebyshev grid points in the radial coordinate. However, if 
desired, U,,(R), S,,(R), g,,(R), and h+,(R) can be written as 

(2.7a, b, c, d) 
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In the expressions in (2.6) to (2.7) the Chebyshev polynomials T,(R) can be 
expressed as 

T,(R)=c0s(fc0s-‘R). (2.8) 

By taking the Chebyshev-tau approximation approach in the 4 and 2, we can 
make use of the recurrence relations for the derivatives of Chebyshev polynomials 
[l] and the boundary conditions (2.5c, d) to (2.5e, f) to write 

aw 
2 0 
a2u 
a22 

(2.9) 
T,(4) T,(Z) 

(2.10) 

M-2 

U:?(R) = c C, Up,(R) + B,,(R) (2.11) 
p=o 

and 

N-2 

u!?(R) = c ynq U,,(R) + I,, 

q=o 
(2.12) 

where the C, and the boundary term B,,(R) are given in Eqs. (A.l) to (A.4) in the 
Appendix, the Y,,~ and the boundary term D,,(R) are given in Eqs. (A.6) to (A.9) in 
the Appendix. 

Substitution of Eq. (2.11) and (2.12) in (2.2), together with the use of Eqs. (2.6a) 
and (2.6b), yields 

~‘JU,,(R) + e2tllR4+ (I2 Mz2 CmpUpn(R) + “2’ YnqumqW =o,,(W, (2.13a) 
0 P-0 q=o 

where 

(2.13b) 

The original three-dimensional equation (2.2) has now been reduced to a system 
of coupled one-dimensional differential equations with the m and n in Eq. (2.13) 
running from 0 to (M - 2) and from 0 to (N- 2), respectively. 

Note that had the boundary conditions at #= f 1 and Z= + 1 been of the 
homogeneous type, then the terms involving B,,(R) and D,,(R) on the r.h.s. of 
Eq. (2.13) would be identically zero. Such a technique of handling the general 
inhomogeneous boundary conditions encountered in the solution of the elliptic 
equation was pointed out by Deville [4]. 
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If a second-order differencing is used over a uniform grid lines of spacing At? in 
the o-direction, then Eq. (2.2) simply reduces to 

1 
’ + (qR + r)2(A8)2 

(Uj-l-ZUj+ Uj+,)=S(R,jAO, 2) (2.14) 

where mapping is only done in the radial direction only; AtI = l&/M and 
j = 0, 1, 2 )..., M- 1, M. The imposition of boundary conditions at 8 = 0 and 8, is 
standard. 

For periodic boundary conditions in the e-direction Fourier series should be used 
(in the e-direction) by writing U(R, 8, Z) as 

M/Z--l N 

U(R, 8, Z) = 1 1 U,,,,,(R) eim2”B’eoT,,(Z), 
m= -M/2 n=O 

(2.15) 

where U,,,,(R) can also be written in the form given in Eq. (2.7a). 
Both U,, and U!,,, are the Chebyshev-Fourier coefficients. The case of 8, = 27r 

corresponds to an annular geometry (Fig. 2) that is typical of flow in tur- 
bomachines where periodicity in the radial and axial direction is not usually valid. 
In this particular case, U,,(R) should be calculated from 

LZ - :;!;;;I U,,,,(R) + “f’ ynq U,,,,(R) = &,(R) -D,“(R) 
q=o 

(2.16) 

for m= -M/2 to M/2- 1. 

FIG. 2. A cylindrical annulus of constant inner and outer radius. 
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III. NUMERICAL METHODS 

We now diagonalize the matrix C of dimension (M - 1) by (M - 1) with 
elements C, and the matrix r of dimension (N- 1) by (N- 1) with elements yns 
as 

E-‘CE=A (3.1) 

and 

&-T&=x (3.2) 

where /i is a diagonal matrix of dimension (M- 1) with diagonal elements I, as 
eigenvalues of the matrix C, 1 is a diagonal matrix of dimension (N- 1) with 
diagonal elements xn as eigenvalues of the matrix r, the matrices E and E are the 
corresponding eigenvector matrices. 

In addition, given the matrices U and (T which are of dimension (M- 1) by 
(N - 1) with elements U,,(R) and a,,(R), one can obtain corresponding matrices 
0 with elements O,,(R) and b with element 6,,(R) from 

U=E&’ (3.3) 

~=E&E~ (3.4) 

where the superscript T denotes the transpose of the matrix. 
Use of Eqs. (3.1) to (3.4) in Eq. (2.13) yields 

(3.5) 

This process effectively decouples the system of one-dimensional equations in (2.13) 
thus permitting the solution of Q,,(R) for each m and n as described below. 

1II.A Method of Collocation followed by Diagonalisation 

The collocation approximation .Yc to the differential operator Y is given by 

C%fJrnnlR=R,= i L,Qmn(R/) (3.6) 
I=0 

where 

1 
Lil=7d;‘2’+ 

1 Kl 
r q(~Ri+~)d”1’+(qR+~)2’ 

In Eq. (3.7), dzc2) and dir(‘) are, respectively, the elements of the collocation 
approximation to the second-order differential operator d2/dR2 and the first-order 
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differential operator d/dR over the Chebychev points Ri= cos xi/L [S, 61. The 
boundary conditions at R = f 1 gives 

L-l 

&nn( - 1) = 1 Qi &n,(Ri) + tnn 
i= 1 

L-l 

(3.8a) 

8mn( + 1) = C Pi omn(Ri) + Trnn 
i=l 

(3.8b) 

where Pi, p,,,,, Qj, and p,,,, are given in Eq. (A.1 1) in the Appendix. The boundary 
terms ?‘,,,n and pm,, are identically zero for homogeneous boundary conditions at 
R = + 1. The boundary conditions at R = _ + 1 are imposed by eliminating o,J - 1) 
and U,,( + 1) from (3.6) so that 

L-l 

[~c~mn]/~=R,= C L$onm(R,)+ fimn 
I= I 

for l<i<L-1, l<I<L-1, where 

(3.9) 

(3.10) 

and 

The collocation approximation to (3.5) can now be written as 

[Wll:+x] l?g=sg (3.12) 

where IV: is a collocation matrix of dimensions (L - 1) by (L - 1) with elements 

4&n 
wf = Li: + ,Yj;(,& + 5)’ (3.13) 

for l<idL-1, l<I<L-1; 8x is a column vector of length (L-l) with 
elements o,,,,(R,) for I = 1 to L - 1; and gz is a column vector of length (L - 1) 
with elements G,,(RJ - pi,,,,. 

One can further proceed to diagonalise the collocation matrix W;l: by [7] 

*,‘WZ*, = @??I (3.14) 

where @, is a diagonal matrix with diagonal elements #mr as the eigenvalues while 
+,,, is the corresponding eigenvector matrix. This would be desirable for repeated 
solutions for U(R, 4, Z) with many different S(R, 4, Z). 

The solution o$ for each m is given by 

o~=lj,[@,+~]-‘$,‘a~. (3.15) 
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Once 02 is known, o,,( - 1) and o,,( + 1) can be obtained from Eq. (3.8). 
Equation (3.3) is then used to calculate U,,(R,) for m = 0 to (M- 2) and n = 0 to 
(N- 2). Finally, U,- ,,,(Ri), U&R,), U,,,- ,(Rj), and U,,,(R,) are calculated 
using the boundary conditions in Eqs. (2.5c, d) and (2.5e, f). 

1II.B Spectral Iteration Method 

Following Orszag [2], we construct a spectral collocation approximation M,, as 
well as a corresponding second-order finite difference approximation M,, to the 
variable coefficient Chebyshev operator [.Z’ + (4/8i(qR + 5)‘) A,,, + x,] at the 
Chebyshev grid lines given by Ri = cos xi/L, taking proper account of the boundary 
conditions at R = + 1. Numerical calculations are implementd to estimate the upper 
and the lower bound of IlM;‘M,,ll; it is found that with L= 16, 

Od~,i,~< lIW;%,II Omax 4.5 (3.16) 

for the relevant values of A, and xn encountered here. The o,,( Ri) for i = 0 to L are 
then obtained iteratively using Richardson (Jacobi) method, 

Map60$+‘)= -o(M,, Ok’)-&.) (3.17a) 
@+u= (Q,+s@+l) (3.17b) 

where the optimum value for o is given by [2] 

2 
CO= 

&in + Pmax‘ 
(3.18) 

The matrix M,, is tridiagonal so that O(L) operations are necessary to obtain So,. 
M,, 0, on the r.h.s. of Eq. (3.17a) can be evaluated efficiently using the FFT 
algorithm [S] in O(L log L) operations. The boundary conditions at R = f 1 are 
enforced by replacing the first and the last element of the r.h.s. of (3.17a) by 

and 

a- &mW+P- $ ‘&n(R) 1 R=-1 

respectively. 
When the solution converges, i.e., 

SO,-+O, 

Eq. (3.4) and the boundary conditions will be satisfied exactly. 
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As in Section (III.A), the knowledge of o,,(R) allows the determination of 
U,,,,,(R) from Eq. (3.3) whence U,- I,n, UM,n, Urn+ 1, and U,,, can be determined 
using the boundary conditions in Eqs. (2.5c, d) and (2.5e, f). 

Finally, if a mixed-spectral-finite difference method with second-order differenc- 
ing over a uniform grid lines of spacing de in the e-direction is used, the matrix C 
simply becomes a tridiagonal matrix with off-diagonal elements ~/(LQ?)~ and 
diagonal elements -2/(48)*. Apart from this, the solution technique is the same as 
described above. Similarly if periodicity holds in the e-direction, the matrix C 
simply becomes a diagonal matrix with elements - (27rm/8,)2 for m = -M/2 to 
(M/2) - 1, where m is the wave number. In this case, U(R, 8, 2) is simply given by 
Eq. (2.15). Note that when 8, = 27c, the domain becomes an annular one (Fig. 2). 

IV. RESULTS 

We have developed computer programs for solving the three-dimensional 
Poisson and Helmholtz’s equations in cylindrical coordinate by (i) an expansion in 
a triple series of Chebyshev polynomials, (ii) a mixed-spectral finite difference 
technique, and (iii) an expansion in a Chebyshev-Fourier series whenever 
periodicity in the e-direction is applicable. We choose (Ri, #j, 2,) = (cos xi/L, 
cos nj/M, cos xk/N) so that the truncated Chebyshev series are mere discrete cosine 
series, and for values of L, M, and N which are power of 2, the FFT algorithm [S] 
can be used efficiently for the evaluation and the inversion of these series. 

For illustrating the accuracy and the convergence character of the different 
solution procedures, the double precision version of the computer programs were 
used for obtaining numerical solutions to Eq. (2.2). The function S(r, 8,Z) on the 
r.h.s. of Eq. (2.2) has been chosen so that an analytical solution U(r, 8, 2) can be 
obtained with different types of imposed boundary conditions. For the case of a 
three-dimensional Poisson’s equation, S(r, 8, 2) is chosen so that the analytical 
solution U(r, 8, 2) is 

with ri = 2, r. = 4, l$, = 0.5. 
The computer codes were run on the DEC PDP 11/70 as well as Perkin-Elmer 

3242 minicomputers. To elucidate the features and accuracy of the method, different 
types of boundary conditions and different resolution ranging from 4 by 4 by 4 to 
32 by 32 by 32 are used. By evaluating U(r, 8,Z) on the boundaries and by choos- 
ing various combinations of boundary constants, a +, B+ , a,, b + , A + , and B, , - - - - - 
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different types of boundary conditions may be imposed to obtain the numerical 
solution. Table I shows the results obtained spectrally using a triple series of 
Chebyshev polynomials. In Table I, with the exception of the last one all cases have 
been done with boundary constants a *, /3 +, a *, b *, A &, and B, taken to be 0 or 
one. For the last case in Table I, we have taken r, = 5.0, r0 = 10.0, 8, = 1.5707963 
(corresponding to a bend of 90”), 

a+ = 1.5, 8, =3.25, cc- =0.5, /!- = 1.45, 

a+ = 2.75, b, = - 1.95, a- = 5.0, bp = 7.15, 

A + = - 1.85, B, = 10.0, A- = 25.0, B- = -70. 

The representative timings shown in Table I and in subsequent tables pertain to 
the Perkin-Elmer 3242 minicomputer. The results in Table I show that for the 
various type of boundary conditions used, the maximum pointwise error between 
the numerical solution and the exact analytical solution is of the order of lo-” for 
a resolution of 16 by 16 by 16. These results show the proper treatment of boun- 
dary conditions (homogeneous or inhomogeneous). Since the mathematical features 
of spectral methods follow very closely those of the partial differential equation 
being solved, an incorrect treatment of the boundary conditions will yield the 
erroneous solution. 

Table II shows the accuracy attained for the resolution ranging from 4 by 4 by 4 
to 32 by 32 by 32. The observed rapid convergence is representative of the perfor- 

TABLE I 

Use of Different Types of Boundary Conditions” 

Type of boundary 
conditions Resolution 

Maximum 
pointwise error 

CPU time for CPU time for 
execution preprocessing 

(set) set 

Dirichlet on 16x 16x 16 1.9987056 x 10-r’ 26.634 12.398 
all boundaries 

Neumann in R 16x 16x 16 1.863627 x 10-l” 26.721 12.853 
Dirichlet in 4 
and Z 

Mixed type in R 16x16~16 1.874447 x lO-‘O 26.618 12.826 
Neumann in 4 
Dirichlet in Z 

Mixed type in R & 4 16X16X16 1.988369 x 10 - lo 26.766 13.182 
Neumann in Z 

Mixed type on all 16X16X16 3.356077 x 10 -lo 26.640 13.083 
boundaries 

Mixed type on all 16x16~16 2.0958088 x lo-r0 26.606 13.095 
boundaries 

a Given CPU time on PE-3242 mini-computer only. 
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TABLE II 

Accuracy versus Resolution” 

CPU time for CPU time for 
execution preprocessing 

Resolution Maximum pointwise error (min: set) (min: set) 

4X4X4 0.113464 0.399 0.167 
8X8X8 9.53562 x 1O-6 2.259 1.142 

16x16~16 1.874447 x lo-” 26.618 12.826 
32x32~32 6.015223874 x lOWLo 9:41.830 2143.699 

0 Boundary conditions: mixed type at R = + 1, Neumann at (= + 1, Dirichlet at z = & 1. Given CPU 
time on PE-3242 mini-computer only. 

mance of the Chebyshev expansion for solutions which are infinitely differentiable. 
For the case where 9 is that given in Eq. (2.4), we take K, = 10 and K, = 15. The 

corresponding S(r, 8, Z) is obtained by substituting for U(r, 8, Z) from Eq. (4.1) 
into Eq.(2.2). With a resolution of 16 by 16 by 16, the maximum pointwise error 
between the numerical solution and the exact analytical solution is 
1.882379 x 10-l’. For this case, the boundary conditions used were of the mixed 
type at R = + 1, the Neumann type at 4 = + 1, and the Dirichlet type at Z= + 1. 

Table III shows the results on the maximum pointwise error obtained if a 
second-order-finite difference is used over a uniform grid in the e-direction. The test 
function is again that given in Eq. (4.1) and Dirichlet boundary condition is applied 
on all boundaries. The accuracy of spectral solution is superior to that of mixed- 
spectral-finite-difference scheme. The mixed-spectral-finite-difference scheme has 
been tested with a second-order polynomial in 8 (e.g., a0 + al0 + a28’, where a0, al 
and a2 are given constants) replacing the cos[rt(e/0, - 1 )] + sin[n(8/0, - I)] in 
Eq. (4.1), and the resulting maximum pointwise error is of the order of 10-l’ with 
any boundary conditions for a resolution of 16 by 19 by 16. Thus, if variation of U 
in the e-direction is gradual and approximates that of a low-order polynomial, the 

TABLE III” 

Resolution Maximum pointwise error 

CPU time for 
execution 
(min: set) 

CPU tim for 
preprocessing 

(min: set) 

8X8X8 1.2640248 x 10 -* 
16X16X16 3.16270205 x 1O-3 27.003 14.190 
16x20x 16 2.247064 x 1O-3 
16x32~16 7.936344 x 10 -4 55.622 51.319 
32x32~32 8.02785 x 1O-4 10:14.026 2:49.145 
16x64~16 1.9841793 x 1O-4 2:03.836 1:30.782 

0 Given CPU time on PE-3242 mini-computer only. 
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TABLE IV” 

Resolution Maximum pointwise error 

8X8X8 7.574855 x 10-e 
16x16~16 1.401398 X 10-10 

a Boundary conditions: mixed type at R = k 1, Z = k 1, periodic in 
O-direction. 

use of a second-order finite difference over a uniform grid in the o-direction is 
justified. 

In the case where periodicity is applicable in the e-direction the maximum 
pointwise error obtained for a test function given by 

U(r, 8,Z) = cos - 
[ i[ 

1 i(r-<)-l.O]}+sin{~[~(~-t)-l.O]}][cos(~-1) 

+ sin(F-l)][cos{i(Z-l)}+sin{t(Z-1)}] O (4.2) 

is shown in Table IV. 
Finally, the technique of spectral iteration described in Section (1II.B) is used to 

solve the Poisson’s equation with U expanded as a triple Chebyshev series. As 
before, the test function is that given in Eq. (4.1). For a resolution of 16 x 16 x 16 
after some 34 iterations the maximum pointwise error reduces to 2.82928 x 10 ~ lo; 
Dirichlet boundary conditions are imposed on all boundaries. In general, the use of 
spectral iteration technique may need more CPU time than the use of a direct 
method that applies matrix diagonalization to all the differential operators. 
However, it should be noted that a simple Richardson iteration technique has been 
used here; the CPU time could further be reduced by employing acceleration 
methods. 

APPENDIX 

The C, and the B,,(R) in Eq. (2.11) are given as follows: for odd m with all p 
such that O<p<m+l and with evenp such that.m+3<p<A.-2 

CWp=&-(M-l)[(M-l)‘-m’]{(u- -b-@)(a+ +b+p2) 
ab m 

- (a, +6+M2)(-l)P(ap -b-p*)) (A.la) 

while with odd p such that m + 2 < p < M - 3 

C,=+p(p’-m2)+&- (M- l)[(M- l)‘-m’]{(a- -b-M2)(a+ +b+p’) 
ab m 

-yu+ +b+M2)(-l)P(u_-b-p2). (A.lb) 
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B,,(R) is the boundary term given by 

B,,(R) = & (M- l)[(M- 1)%?22] 
nb m 

x {[a, +b+M2] g-,- [a- -b-M2]g+,}; (A.21 

and for even m with all p such that 0 dp <m + 1 and with odd p such that 
m+3<p<‘M-2 

C,,=& M(M2-m2){[a- -b-(M-l)‘][a+ +b+p2] 
ab m 

+ [a++b+(M-1)2](-l)P[u--b-p2]} 

while with even p such that m + 2 <p < M- 2 

(A34 

C,=p(p2-m’)+& M(M2-m2){ [a- - b-(M- l)*][a+ + b, p2] 
ab m 

+ [a, +b+(M-1)21(-l)PCa- -bep’l); 
again, B,,(R) is the boundary term given by 

(A.3b) 

&,,(W= -A M(M* - m2) 
a6 m 

x {La- -b-W- l)*lg+,+ [a+ +b+W- 021g+n). (A.4) 

The C, in the above equations and the C, in the equations to follow assume a 
value of 2 for m (or n) = 0, and a value of 1 for m (or n) > 0. The D,, in Eqs. (A.l) 
to (A.4) is given by 

Dab= -{[a~-b-(M-l)2][a++b+M2]+[a++b+(M-1)2][a~-b~M2]}. 

(A-5) 

The yn4 and the D,,(R) in Eq. (2.12) are given as follows: for odd n with all q 
such that O<q<n+l and even q such that n+3<q<N-2 

y,,=&(N-l)[(N-I)‘-n2]{[A--B-N2]CA,+B+q2] 
AB n 

- [A, +B+N2](-l)9[A- -B-q2-J}, (A.6a) 

while with odd q such that n + 2q < N - 3 

Yn9 - -&(q2-n2)+ 

n 
&(N-l)[(N-1)2-~2]{(A--B-N2)(A++B+q2) 

AB n 

- (A, +B+N2)(-l)9(A- -B-q2)}. (A.6b) 
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D,,(R) is again the boundary term given by 

D,,(R) = & (N- l)[(N- l)“-n2] 
AB n 

x {[A+ +B+N’] h-,(R)- [A- -B-N21 h+,(R)} (A.7) 

and for even n with all q such that 0 <q < n + 1 and with odd q such that n + 3 < 
q<N-2 

~,,=~N(Nz-n2){[L-B~(N-l)2][A++B+q2] 
AB n 

+ [A+ +B+(N- l)*](-Uy[A- -B-q*]) 

while for q even such that n + 2 6 q d N- 2 

(A.8a) 

1 
Ynq =Cq(q*-n2)+ 

n 
&N(N*-~‘)([A~ -B-(iv-i)*][~+ +B+$] 

AB n 

- [A++B+(N-1)2](-l)y[A~-B~q2]}. 

The boundary term D,,(R) is given by 

D,,(R) = -A N(N~-~~) 
AB n 

x {[A- -B-(N- l)‘] h+,(R)+ [A, +B+(N- l)‘] h_,(R)}. 

The DA, in Eqs. (ASk(A.8) is given by 

DAB= -{[A--B-(N-l)*][A+ +B+N*] 

+[A--B~N2][A++B+(N-1)2]). 

The Pi, F,,, Qi, and p,, in Eq. (3.8) are given by 

Pi=& ((C +~-dL*/l~)~+d~~l~~((B+d~~l~)(~~d~~l~)} 

Fmn=+ V+~~~“J-,,(a- +B-4Y93+,, 
‘$ 

P,=& {(a+ +~+d~l’)(~_dt!l’)-(~_d~~l’)(~+d~’l’)} 

(A.8b) 

(A.9) 

(A.lO) 

(A.1 la) 

(A.llb) 

(A.llc) 

(A.1 Id) 
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where 

f +,,,” and ?-,, are obtained from f+mn and f --mn via matrix operations described in 
Eqs. (3.3) and (3.4). 
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